CIRCULATION COPY

SUBJECT TO RECALL IN TWO WEEKS

UCID-18513

A JOINT GAUSSIAN PROBABILITY PLOT PROGRAM

S. G. Azevedo D. T. Gavel

January 1980

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161

ABSTRACT

The analysis of joint-Gaussian distributions of two variables can be aided greatly by meaningful graphical techniques. The program described by this report performs such a task. Two elliptical equi-probability contour plots of the probability density function are produced; one using statistics from the raw data and the other using normalized (zero mean, unit variance) variables. Several separate data sets of the same variables may be plotted, for example, to compare estimators. The techniques discussed here for interpreting the plots enable the user to gain insight into the statistical information being displayed.

Table of Contents

		<u>Page</u>
Abstrac	t	i
List of	Figures	iii
List of	Tables	iii
I. Int	roduction	1
II. The	eory	5
1.	Ellipse Equation	6
2.	Rotation and Translation of the Ellipse	8
3.	Normalization of the Ellipse	11
4.	Reconstruct Original Ellipse	13
5.	Calculate Size of Ellipse (determine b)	13
6.	Correlation Plot	17
III. Pr	ogram Execution	21
1.	User Options	21
2.	Input File Format	23
3.	Sample Input for ECP2D	23
4.	Sample Problem	26
IV. Su	mmary	34
Acknow1	edgements	35
Referen	ces	36
Appendi	x A: Source Code Listing for ECP2D	37
Appendi	x B: Proof of Equations 6 and 7	44

List of Figures

Figure	<u>Title</u>	Page
1.	Elliptical Contours of the Joint Density Function	3
2.	Transformations of the Ellipse	9
3.	Transformation to Correlation Plot	20
4.	General Flow Chart of ECP2D	22
5.	Typical Output Information Display	29
6.	Display of Contours for Two Data Sets	30
7.	Correlation Plots of the Data Sets	31
8.	Determining Correlation of Two Random Variables From the Normalized Contour Plot	33

List of Tables

Table	<u>Title</u>	Page
I.	b-Sigma Probability Distribution Values	17
II.	Input File Field Description	24
III.	Format of Input File	25
IV.	Example Problem Input File	27

		•
		•
		•
		J

I. INTRODUCTION

Analysis of errors in measurements, estimates, parameters, etc., is frequently encountered in engineering applications. By virtue of the Central Limit Theorem [1], many of these errors can reasonably be assumed to have normal (Gaussian) distributions. In order to ease the burden of numerical error analysis, graphical methods of displaying the important statistical information have been developed.[2] This report describes such a method for the two-dimensional Gaussian vector case.

When confronted with a single Gaussian-distributed random variable, it is not difficult to draw or visualize the probability density function (pdf) given the mean and standard deviation. This allows easy computation of confidence intervals or probability intervals as is done often in sample statistics. However, with bivariate Gaussian random variables, the pdf becomes projected in three-space and the statistical properties are much less intuitively obvious. We now become concerned with covariance and correlation [1], in addition to the properties of the individual random variables.

The computer program described in this report, ECP2D, presents a meaningful way of displaying these joint distributions. This is done by plotting contours of constant probability density which

have certain user-specified probability of containment within the contour. In this way, the important information from the three dimensional probability density surface is projected onto a planar coordinate system as is done with topographical maps. In our case, we are concerned only with Gaussian distributions, so these contours are all elliptical in shape.[3] The projection is shown in Figure 1.

If many separate experiments or trials each produce statistics describing the joint pdf of two random variables, the contours of each trial may be displayed on one plot for comparison. This comparison provides the motivation for development of the ECP2D program. The ellipses produced can be a means of ascertaining the performance of one parameter estimator over another. However, it is sufficiently general to be applicable to any bivariate Gaussian random vectors.

Automatic scaling of the plot, and differences in units of the two axes can cause distortion in the size and orientation of the contours, so an alternative graphing method showing normalized data was also developed. This provides much more information about the correlation of the two random variables.

FIGURE 1: ELLIPTICAL CONTOURS OF THE JOINT DENSITY FUNCTION IN $(\,x_{1}\,,\,x_{2}^{}\,)$

In this report, we discuss:

- Contour Plotting Theory
- Program Usage
- Interpretation of the Output

II. THEORY

In this section, we develop the theory behind plotting an ellipse of constant probability density. The fundamental problem can be stated as:

Given the mean and the covariance matrix of a joint Gaussian random vector in two-space, find an equi-probability elliptical contour such that the probability of containment within the ellipse is some value, P_{Δ} .

In order to solve this problem we:

- Show that a constant probability contour for a Gaussian pdf is an ellipse;
- 2) Transform the ellipse to the origin;
- Normalize the axes (circle);
- 4) Reconstruct the original (\underline{x} -plane) ellipse for the calculated value of P_A ; and
- 5) Calculate size of the ellipse.

After plotting this ellipse, a second plot is also generated for displaying correlation between the two random variables.

II-1. Ellipse Equation

With the assumption of Gaussian random variables (call them x_1 and x_2), the joint probability density function is

$$p(x_1, x_2) = \frac{1}{2\pi |\underline{c}|^{1/2}} \exp \left[-1/2(\underline{x} - \underline{\mu}_x)^{\mathsf{T}} \underline{c}^{-1}(\underline{x} - \underline{\mu}_x)\right] \qquad (1)$$

where
$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 = Gaussian random vector

$$\underline{\mu}_{X} = \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} E(x_{1}) \\ E(x_{2}) \end{bmatrix} = \text{mean value of vector } \underline{x}$$

$$\underline{\mathbf{C}} = \begin{bmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{21} & \mathbf{c}_{22} \end{bmatrix} = \text{covariance matrix}$$

that is
$$c_{ij} = E[(x_i - \mu_i) (x_j - \mu_j)]$$
 for i, j = 1,2
so $c_{12} = c_{21}$.

Making $p(x_1,x_2)$ a constant and solving for the quadratic form in (1) we obtain:

$$\left(\underline{x} - \underline{\mu}_{x}\right)^{\mathsf{T}} \underline{c}^{-1} \left(\underline{x} - \underline{\mu}_{x}\right) = b^{2} \tag{2}$$

Expanding (2) we have the equation

$$\alpha(x_1-\mu_1)^2 + \beta(x_2-\mu_2)^2 + \gamma(x_1-\mu_1)(x_2-\mu_2) = b^2$$

where
$$\alpha = \frac{c_{22}}{c_{11}c_{22} - c_{12}^2}$$

$$\beta = \frac{c_{11}}{c_{11}c_{22} - c_{12}^2}$$

$$\gamma = \frac{{^{2c}}_{12}}{{^{c}}_{11}{^{c}}_{22} - {^{c}}_{12}^2}$$

and b = scalar constant.

The matrix \underline{C} is constrained to be positive definite [4] because it is a covariance matrix. This constraint causes (2) to be the equation for an ellipse in the \underline{x} plane. The constant b is related to the total probability distributed within the ellipse, P_A , (to be shown in Section II-5). We will assume that b is an arbitrary constant for now and explain the procedure for locating and plotting the ellipse defined by equation (2).

II-2. Rotation and Translation of the Ellipse

To simplify the computation of the ellipse equations, we can perform a similarity transformation upon the \underline{C} matrix. We constrain the transformed matrix to be diagonal which merely rotates the coordinate axes to align with the major and minor axes of the ellipse. Then subtracting the mean vector from \underline{x} translates the center of the ellipse to the origin (see Figure 2).

The transformation we wish to make is:

$$\underline{y} = \underline{S}^{-1} \left(\underline{x} - \underline{\mu}_{\underline{X}} \right) \tag{3}$$

where
$$\underline{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
 = the transformed variable

and \underline{S} is the transformation matrix.

Then from equations (2) and (3),

$$(\underline{Sy})^{\mathsf{T}} \underline{c}^{-1} (\underline{Sy}) = b^{2}$$

$$\underline{y}^{\mathsf{T}}\underline{b}^{-1}\underline{y} = b^{2} \tag{4}$$

or

FIGURE 2: TRANSFORMATIONS OF THE ELLIPSE

where

$$\underline{D} = \begin{bmatrix} d_1^2 & 0 \\ 0 & d_2^2 \end{bmatrix} = \underline{S}^{-1} \underline{C} \underline{S}^{-T}$$

Notice that d_1^2 and d_2^2 are the variances with respect to the <u>y</u>-coordinate system. Equation (4) can be written alternatively as:

$$\frac{y_1^2}{d_1^2} + \frac{y_2^2}{d_2^2} = b^2$$

so that (bd_1) and (bd_2) are the major and minor axes of the translated-rotated ellipse (see Figure 2).

In order for the joint probability density function to remain the same throughout this transformation, \underline{D} and \underline{C} must be similar matrices [3] ($\underline{C} = \underline{SDS}^{-1}$). Under a similarity transformation, the determinant and eigenvalues are unchanged. Since \underline{C} is a symmetric matrix, this similarity transformation specializes to an orthogonal transformation

where $\underline{S}^T = \underline{S}^{-1}$. An \underline{S} matrix which satisfies these conditions is:

$$\underline{S} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \\ \sin\theta & \cos\theta \end{bmatrix} \tag{5}$$

where θ is the angle of rotation of the <u>y</u>-axes from the <u>x</u>-coordinate plane. Now, from this transformation we can derive that [3] (see Appendix B for details)

$$\begin{vmatrix} d_1^2 \\ d_2^2 \end{vmatrix} = \frac{c_{11} + c_{22} + \sqrt{(c_{11} - c_{22})^2 + 4(c_{12})^2}}{2}$$
 (6)

$$\theta = 1/2 \quad \tan^{-1} \left[\frac{2c_{12}}{c_{11} - c_{22}} \right] \tag{7}$$

II-3. Normalization of the Ellipse

With a second transformation, we can easily normalize to a circle of radius b (see Figure 2). The reasons for doing this will become apparent later. We set

$$\underline{z} = \underline{T}^{-1}\underline{y} \tag{8}$$

where
$$\underline{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 = the transformed vector

and
$$\underline{T} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$
 (9)

Then from equations (4) and (8),

$$(\underline{\mathsf{Tz}})^{\mathsf{T}} \underline{\mathsf{D}}^{-1} (\underline{\mathsf{Tz}}) = \mathsf{b}^2$$

$$\underline{z}^{\mathsf{T}}(\underline{\mathsf{T}}^{\mathsf{T}}\underline{\mathsf{D}}^{-1}\underline{\mathsf{T}})\underline{z} = b^2$$

But by the definitions, $\underline{T}^T\underline{D}^{-1}\underline{T} = \underline{I}$ (identity matrix) so we obtain the circle equation (Figure 2)

$$\underline{z}^{\mathsf{T}}\underline{z} = b^2 \tag{10}$$

or
$$z_1^2 + z_2^2 = b^2$$

II-4. Reconstruct Original Ellipse

Now, given the points z_1 and z_2 which satisfy this equation, we can easily reconstruct the \underline{x} vector using equations (2) and (8) which give:

$$\underline{x} = \underline{STz} + \underline{\mu}_{X} \tag{11}$$

This now illustrates the simple way in which ECP2D calculates the plot points for an ellipse. First, an array of coordinate pairs representing the solution to equation (10) is established. Then, by determining d_1, d_2 , and θ , the points of the unit circle can be projected back to the \underline{x} -plane (Figure 2) with the transformation given in equation (11). We must be careful however that θ is in the correct quadrant for valid reconstruction.

II-5. Calculate Size of Ellipse (determine b)

Our problem of calculating the integrated probability within the ellipse, $(\underline{x}-\underline{\mu}_{x})^{T} \underline{C}^{-1}(\underline{x}-\underline{\mu}_{x}) = b^{2}$, has now been simplified to computing the probability within the circle $\underline{z}^{T}\underline{z} = b^{2}$. To find this probability, P_{A} (and the corresponding value of b), we integrate the joint probability density function over the

area of the circle. This can be shown by starting from equation (1) and integrating in the \underline{x} space:

$$p_{A} = \iint_{A} \frac{1}{2\pi |\underline{c}|^{1/2}} \exp \left[-1/2 \left(\underline{x} - \underline{\mu}_{x}\right)^{T} \underline{c}^{-1} (x - \underline{\mu}_{x})\right] dx_{1} dx_{2} \qquad (12)$$

where A is the interior area of the ellipse defined by

$$(\underline{x} - \underline{\mu}_x)^T \underline{c}^{-1} (\underline{x} - \underline{\mu}_x) = b^2$$

Now, from the definitions of \underline{T} and \underline{S} by the transformations described earlier,

$$\underline{c} = \underline{STT}^{\mathsf{T}}\underline{s}^{\mathsf{T}}$$

or
$$\underline{c}^{-1} = \underline{s}^{-T}\underline{T}^{-T}\underline{T}^{-1}\underline{s}^{-1}$$
 (13)

But, also from equation (11),

$$\left(\underline{x} - \underline{\mu}_{x}\right) = \underline{STz} \tag{14}$$

and
$$(\underline{x} - \underline{\mu}_{x})^{T} = \underline{z}^{T} \underline{T} \underline{S}^{T}$$
 (15)

So, substituting (13), (14), and (15) into (12) we get

$$p_{A} = \iint_{A} \frac{1}{2\pi |\underline{c}|^{1/2}} \exp\left[-1/2 \, \underline{z}^{\mathsf{T}} \underline{z}\right] dx_{1} dx_{2} \tag{16}$$

The next step is to change the variables of integration so that we integrate over the z-space. The formula for this is [6]:

$$p_{A} = \iint_{A} \frac{1}{2\pi |\underline{c}|^{1/2}} \exp \left[-1/2 \, \underline{z}^{\mathsf{T}} \underline{z}\right] \left| \frac{\partial x}{\partial z} \right| \, \partial z_{1} \partial z_{2} \qquad (17)$$

where
$$\frac{\partial x}{\partial z} \triangleq \begin{bmatrix} \frac{\partial x_1}{\partial z_1} & \frac{\partial x_1}{\partial z_2} \\ \frac{\partial x_2}{\partial z_1} & \frac{\partial x_2}{\partial z_2} \end{bmatrix}$$
.

It is easy to show, using Equation (14), that

$$\left|\frac{\partial x}{\partial z}\right| = \left|\underline{C}\right|^{2}$$

so,

$$p_{A} = \iint_{A} \frac{1}{2\pi} \exp\left[-1/2 \, \underline{z}^{\mathsf{T}}\underline{z}\right] \, dz_{1} dz_{2} \tag{18}$$

The integration area, A, is the area inside the circle, $\underline{z}^T\underline{z}$ = b^2 . For easy integration, we can convert to polar coordinates:

$$P_A = \int_{r=0}^{b} \int_{\omega=-\pi}^{\pi} \frac{1}{2\pi} \exp(-1/2r^2) r d\varphi dr$$

$$= \int_0^b re^{-\frac{1}{2}r^2} dr$$
 (19)

where r = radial distance =
$$\sqrt{z_1^2 + z_2^2}$$

$$\varphi = \text{angle from } z_1 - \text{axis} = \tan^{-1} \left(\frac{z_2}{z_1} \right)$$

Performing the integration we arrive at

$$P_A = 1 - e^{-\frac{1}{2}b^2}$$

then solving for b^2

$$b^2 = -2\ln (1-P_A)$$
 (20)

If we wish, for example, to plot the ellipse within which 95% of the \underline{x} values can be expected to lie, we use equation (2) with b^2 set equal to

$$b^2 = -2\ln (1-.95) = 5.99$$

When b = 1,2, or 3, we encounter the often used one-, two- or three-sigma probability contours [3,5] (see Table I).

Table I: b-Sigma Probability Distribution Values

b	PA
1	.394
2	.865
3	.989

II-6. Correlation Plot

In an effort to obtain more visual information from the data, we present a second contour plot we call a correlation plot. For this plot, another transformation is performed to a coordinate system where the variance in both directions is normalized to 1. We merely show here how the transformation is implemented, and present later the interpretation of the graph.

The elliptical plot produced in the previous sections graphically illustrates a contour of particular likelihood for the vector $\underline{\mathbf{x}}$. But what if the units or the orders of magnitude of the two varibles, \mathbf{x}_1 and \mathbf{x}_2 , are vastly different? We may still wish to see the first plot of the original two-space ellipse, but distortion caused by scaling may give misleading information with respect to correlation or dependence of the two random variables.

For that reason, a second plot is created which gives normalized information for a better display of the comparisons between x_1 and x_2 . This is performed by the following transformation.

$$\underline{\mathbf{x}}^* = \underline{\mathbf{N}} \ (\underline{\mathbf{x}} - \underline{\mathbf{\mu}}_{\mathbf{x}}) \tag{21}$$

where
$$\underline{x}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$$
 = the normalized vector

and N is the normalization matrix.

Then from equation (2)

$$(\underline{N}^{-1}\underline{x}^*)^{\top}\underline{C}^{-1}(\underline{N}^{-1}\underline{x}^*) = b^2$$

or

$$\underline{x}^{*T}\underline{G}^{-1}\underline{x}^{*} = b^{2}$$

or
$$(x_1^*)^2 + (x_2^*)^2 - 2\rho x_1^* x_2^* = b^2(1-\rho^2)$$
 (22)

where

$$\underline{G} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} = \underline{NCN}^{T} = Correlation matrix$$

$$\rho = \frac{c_{12}}{\sqrt{c_{11}c_{22}}} = Correlation coefficient$$

so by algebraic manipulation

$$\underline{N} = \begin{bmatrix} \frac{1}{\sqrt{c_{11}}} & 0 \\ 0 & \frac{1}{\sqrt{c_{22}}} \end{bmatrix}$$

This gives us a new Gaussian random vector, \underline{x}^* , (see Figure 3), with zero mean and unit variance. The plot of the contour in the \underline{x}^* -space gives us an indication of the correlation of the original vector, \underline{x} . An explanation on how to interpret this data is given in the next section.

Transformed Ellipse

FIGURE 3: TRANSFORMATION TO CORRELATION PLOT

III. PROGRAM EXECUTION

This section explains the usage of ECP2D and how to interpret the output. A general flow diagram of the program is shown in Figure 4.

Also presented is a sample application involving estimation schemes.

III-1. User Options

The program has been designed for ease and flexibility of use. Several possible input options are available to the user for producing the output desired.

For a bivariate normally distributed random vector $\underline{\mathbf{x}}$ with mean $\underline{\mu}_{\mathbf{X}}$ and covariance matrix $\underline{\mathbf{C}}$, let $\underline{\mathbf{x}}(1),\underline{\mathbf{x}}(2),\ldots,\underline{\mathbf{x}}(N)$ be a set of data. Many such data sets may be processed and plotted for either of two cases:

- 1) The data $\underline{x}(1),\underline{x}(2),\ldots,\underline{x}(N)$ is preprocessed (i.e., $\underline{\mu}_X$ and \underline{C} are known, or estimates of $\underline{\mu}_X$ and \underline{C} are available) and then only $\underline{\mu}_X$ and \underline{C} are inputted to the program for each data set. The \underline{C} matrix <u>must</u> be positive definite.
- 2) The raw data $\underline{x}(1),\underline{x}(2),...,\underline{x}(N)$ is inputted for each data set.

FIGURE 4: GENERAL FLOW CHART OF ECP2D

Up to ten different ellipses, corresponding to ten probability values, may be plotted <u>for each</u> data set on the same graph. In addition, any constant coordinate pair (labelled x_{ltrue} , x_{2true}) can be plotted for comparison.

III-2. Input File Format

The input file for ECP2D must be present on the disc at the start of execution and must be named ECPIN. This file allows the user to specify certain plot options as well as the problem parameters. Table II gives a description of each field in the input file. Table III lists the input fields and their corresponding formats. Notice that lines four and five are repeated for each of the data sets to be input.

III-3. Sample Input for ECP2D

An application of this plotting program is to compare the performance of several estimation schemes for identifying some constant parameters (θ_1,θ_2) of an arbitrary mathematical system. For this problem:

 Each data set corresponds to N trials of an estimation scheme.

Table II: Input File Field Description

Line 1 General Parameters for Plot

M - Number of data sets to be input

Number of contours to draw for each data set

LBLX - Label for the x1-axis of the plot

LBLY - Label for the x2-axis of the plot

Line 2 True Value of the Vector x

ITFLAG - Do you know the true value of both x1 and x_2 ? ($\emptyset = N0$, 1 = YES)

XIT - True value of x1 (if known)

X2T - True value of x2 (if known)

Line 3 Probability Values for the Plot

PR(1), ..., PR(L) - Probability values for each contour (must be between 0 and 1)

REPEAT THE FOLLOWING LINES FOR EACH DATA SET (M times)

Line 4 Data Set Input Parameters

MP - Is input (for this data set) raw data or
 preprocessed? (Ø = Raw, 1 = Preprocessed)

N - Number of data points (if MP = 0)

Line 5 Data Set Input

If MP = 0:

X1(1), X2(1), ..., X1(N), X2(N) - Raw Data Points; $<math>\underline{x}(1), ..., \underline{x}(N)$

If MP = 1:

XE1, XE2 - Mean Values of x_1 and x_2

P11,P22 - Variance of x_1 and x_2

P12 - Covariance of x_1 and x_2

Table III: Format of Input File

<u>Line</u>	Variable Name		Format
1	M,L,LBLX,LBLY	(215,2A10)	
2	ITFLAG,X1T,X2T		(I2,2E16.7)
3	PR(1),,PR(L)		(10F6.4)
4	MP,N		(12,15)
5	If $MP = 0$ If $MP = 1$	X1(1),X2(1),X1(N),X2(N) XE1,XE2,P11,P22,P12	(2E16.7) (5E16.7)

- 2) $\underline{x}_{i}(1), \dots, \underline{x}_{i}(N)$ are estimates of $\underline{\theta} = \begin{bmatrix} \theta_{1}\theta_{2} \end{bmatrix}^{T}$ for each set i, and the sample mean and covariance are used to approximate the $(\underline{\mu}_{x})_{i}$ and \underline{C}_{i} .
- 3) The true (known) value of $\underline{\Theta}$ is plotted as \underline{x}_{true} .

The input file for this application, with two estimators (data sets), is shown in Table IV. The data shown in lines 4-14 and lines 15-16 can be thought of as estimated values of parameters θ_1 and θ_2 from two different estimation schemes. Notice that the first data set is in raw form with N=10 and the second data set is given in "preprocessed" form. A discussion of the output is given in the next section.

III-4. Sample Problem

The standard output obtained from ECP2D is shown in Figures 5 through 7. Figure 5 gives pertinent self-explanatory numeric information with regard to the plots. The probability values used are the one-sigma, two-sigma, and three-sigma values for a two-dimensional Gaussian random

Table IV: Example Problem Input File

```
Line #

2.3.THETA 1 THETA 2
1.1.E-08.5.E-07.
3.394..865..989.
4 0.10.
5 1.003760E-08.4.8368E-07.
6 1.004390E-08.4.8183E-07.
7 1.605415E-08.4.8183E-07.
8 1.005429E-08.4.8183E-07.
1.005456E-08.4.8181E-07.
1.005790E-08.4.8165E-07.
12 1.005790E-08.4.8165E-07.
13 1.004282E-08.4.8309E-07.
14 1.005730E-08.4.8309E-07.
15 1.
16 9.99E-09.5.04E-07.7.E-23.8.E-19.5.E-21.
```

vector. The angle of the major axis of the ellipse from the x_1 axis (between -90° and +90°) is calculated and displayed along with the diagonalized variances (d_1^2 and d_2^2 ; the eigenvalues of C). Also, the correlation coefficient (ρ) is shown; if ρ = 1, we have maximum correlation between x_1 and x_2 , if ρ = -1 we have maximum negative correlation, and if ρ = 0 we have no correlation between the two variables.

In Figure 6, the plots of the two data sets are displayed. The size of the two contours gives an indication of the relative <u>precision</u> of each estimator; i.e., the curves for data set A are smaller than those for data set B, so estimator A is more precise in its estimate. Accuracy of the estimators, on the other hand, can be observed by the relative distance of mean value points from the true value (the large black dot). This is called the <u>bias</u> of the estimator and it indicates low accuracy when the bias is large. Notice in Figure 6 that although estimator A produces more precise estimates than B, there is also a larger bias in the A estimates indicating less accuracy.

Note, also, that the apparent angle of rotation of the ellipses does not correspond to that reported on Figure 5. This is due to the distortion caused by scaling since \mathbf{x}_1 and \mathbf{x}_2 have vastly different units and values.

TWO-SPACE PROBABILITY PLOT

TRUE VALUE OF X1 : 1.000E-08
TRUE VALUE OF X2 : 5.000E-07

PROBABILITY VALUES OF CONTOURS

0.3940 0.8650 0.9890

DATA SET NO. 1

SAMPLE MEAN OF X1 : 1.005E-08
SAMPLE MEAN OF X2 : 4.822E-07
SAMPLE VARIANCE OF X1 : 4.913E-23
SAMPLE VARIANCE OF X2 : 5.554E-19
SAMPLE COVARIANCE : -5.196E-21
CORRELATION COEFFICIENT : -9.948E-01
ANGLE OF MAJOR AXIS FROM X1 (DEGREES) : -89.4640

DIAGONALIZED VARIANCES : 5.555E-19 5.135E-25

DATA SET NO. 2

SAMPLE MEAN OF X1 : 9.990E-09
SAMPLE MEAN OF X2 : 5.040E-07
SAMPLE VARIANCE OF X1 : 7.000E-23
SAMPLE VARIANCE OF X2 : 8.000E-19
SAMPLE COVARIANCE : 5.000E-21
CORRELATION COEFFICIENT : 9.572E-01

ANGLE OF MAJOR AXIS FROM X1 (DEGREES): 89.6419

DIAGONALIZED VARIANCES: 8.000E-19 3.875E-23

Figure 5: Typical Output Information Display

Figure 6: Display of Contours for Two Data Sets

Figure 7: Correlation Plots of the Data Sets

Therefore, we can obtain general relative information about the properties of the two data sets, and directly read the means and standard deviations (max x_1 value on the one-sigma plot minus μ_1 , is σ_1), but we cannot interpret the correlation of the two variables from this plot.

For that purpose, we turn to Figure 7 which displays the normalized results. Here we plot

$$\underline{x}^* = \underline{N}(\underline{x} - \underline{\mu}_X)$$

or
$$x_1^* = \frac{x_1 - \mu_1}{\sigma_1}$$
 and $x_2^* = \frac{x_2 - \mu_2}{\sigma_2}$

where σ_1 and σ_2 are the standard deviations of x_1 and x_2 respectively. Now the two variables are dimensionless so the relationship between them is more apparent. In fact, only the correlation coefficient (ρ) is available from the graph. Figure 8 shows how different correlation coefficients affect the orientation of the graph.

Thus, we see that the θ_1 parameter and θ_2 parameter are highly (but negatively) correlated in data set A (of Figure 7), but not as highly (and positively) correlated in data set B. So with one estimator, the estimates are very highly dependent on one another, but less so with the other estimator.

FIGURE 8: DETERMINING CORRELATION OF TWO RANDOM VARIABLES FROM THE NORMALIZED CONTOUR PLOT

IV. SUMMARY

We have shown how to display the statistical information contained in a Gaussian random vector in two-space. The computer program ECP2D was developed as a data display/interpretation tool for use specifically in comparing parameter estimates [7].

ACKNOWLEDGMENTS

Many thanks to the motivating efforts of J. V. Candy and the technical statistical help of R. W. Mensing. We would also like to thank Ms. Gail Simpson for typing the manuscript.

REFERENCES

- Bendat, J. S. and Piersol, A. G., <u>Random Data: Analysis and</u>
 Measurement Procedures, New York, John Wiley & Sons, Inc., 1971.
- Davis, J. C., <u>Statistics and Data Analysis in Geology</u>, New York,
 John Wiley & Sons, Inc., 1973.
- 3. Bryson, A. E., Jr. and Ho, Y., <u>Applied Optimal Control:</u>
 Optimization, Estimation, and Control, Washington, D. C.,
 Hemisphere Publishing Corp., 1975.
- 4. Papoulis, A., <u>Probability, Random Variables, and Stochastic</u>

 <u>Processes</u>, New York, McGraw-Hill Book Company, 1965.
- 5. Gura, I. A. and Gersten, R. H., "Interpretation of n-Dimensional Covariance Matrices," AIAA Journal, Vol. 9, No. 4, pp. 740-742, April, 1971.
- 6. Hildebrand, F. B., <u>Advanced Calculus for Applications</u>, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1962.
- 7. Azevedo, S. G., Candy, J. V. and Pimentel, K. D., "Parameter Identification in Hydrology," UCID-Report, Circa 1979.

APPENDIX A

Source Code Listing for ECP2D

```
$CHAT (TV80LIB, ORDERLIB, STACKLIB, EE, ^) MME MME BMME LMME N93 S S 80
2
3
       PROGRAM ECP2D(ECPIN, TAPE5=ECPIN)
4
5
  6
  C*
7
  C*
       DESCRIPTION
8 C*
         THIS PROGRAM PLOTS ELLIPSES OF CONSTANT LIKELIHOOD
  C*
       FOR TWO GAUSSIAN RANDOM VARIABLES. A WRITE-UP ON THE
       THEORY OF OPERATION IS AVAILABLE IN A SEPARATE REPORT.
10
  C*
11 C*
12
  C*
       AUTHOR -- STEVE AZEVEDO
                               L-156
                                       X2-8538
13 C*
14 C≈
       AVAILABILITY -- CDC 7600
15 C*
16 C*
       EXECUTE LINE --
                      XECP2D / T V
17 C*
19 C
20 C....MN
           - MAX NUMBER OF MEASUREMENTS
           - MAX NUMBER OF CONTOURS TO PLOT
21 C....ML
           - MAX NUMBER OF DATA SETS TO PLOT
22 C....MM
23 C....NP
           - NUMBER OF POINTS TO PLOT ON EACH ELLIPSE
24
       PARAMETER (MN=100,ML=10,MM=10)
25
       PARAMETER (NP=100)
       PARAMETER (PI=3.1415926535898)
26
27
       DIMENSION X1 (MN, MM), X2 (MN, MM)
28
29
       DIMENSION X(NP,ML,MM), Y(NP,ML,MM)
       DIMENSION PR(ML)
30
31
       DIMENSION XEI (MM), XE2 (MM), S1 (MM), S2 (MM)
       DIMENSION WX(NP), WY(NP)
32
33 C
35 C≭
        PROGRAM INITIALIZATION
37 C
38
       CALL CHANGE ("+XECP2D")
39 C
40 C....INITIALIZE PLOTTING FOR FR80 105MM FICHE (BUT KEEP FIRST)
41 C
42
       CALL FR80ID(9HF1LM-ONLY,0,1,0)
       CALL KEEP80(10H
43
                       ECPS0.3)
44
       CALL DDERS(-1)
       CALL SETCH (7.,42.,1,0,1,0)
WRITE(100,"(20X,""TWO-SPACE PROBABILITY PLOT"")")
45
46
47 C
48 C....COMPUTE POINTS OF A CIRCLE (RADIUS=1)
49 C
50
       DLTA = 2.*PI/(NP-1)
       ALPHA = 0.
51
52
       DO DL02 I=1,NP
53
       WX(I) = COS(ALPHA)
54
       WY(I) = SIN(ALPHA)
       ALPHA = ALPHA + DLTA
55
56 DL02 CONTINUE
57 C
READ THE INPUT FILE (ECPIN)
59 C*
```

```
61 C
 62 C....LINE 1. READ NUMBER OF DATA SETS AND CONTOURS
 63 C
              M - NUMBER OF DATA SETS
 64 C
              L - NUMBER OF CONTOURS
           LBLX - LABEL FOR X-AXIS
 65 C
           LBLY - LABEL FOR Y-AXIS
 66 C
 67
           READ(5, *(215, 2A10) *) M, L, LBLX, LBLY
           IF (M.CT.MI)
                          THEN
 68
                  WRITE(59, "(1X, /, "" ERROR--TOO MANY DATA SETS; M = "", 15)") M
 69
 70
                  CALL EXIT(1)
 71
              ENDIF
 72
           IF (L.GT.ML)
                          THEN
                  WRITE(59, "(1X, /, "" ERROR--TOO MANY CONTOURS; L = "", 15)") L
 73
                  CALL EXIT(1)
 74
              ENDIF
 75
 76 C
77 C.
         ..LINE 2. READ TRUE VALUES OF X1 AND X2
            ITFLAC = 1 IF 'TRUE VALUE IS KNOWN
 78 C
                      e if not
 79 C
                    - TRUE VALUE OF X1
- TRUE VALUE OF X2
 80 C
            XIT
 81 C
            X2T
 82
           READ(5, "(12, 2E16.7)") ITFLAG, X1T, X2T
           IF (ITFLAG.NE.0) THEN
 83
                  WRITE(100, "(/, 23X, ""TRUE VALUE OF X1 : "", E12.3)") X1T
 84
                  WRITE(100, "(23X, ""TRUE VALUE OF X2 : "", E12.3)") X2T
 85
 86
 87 C
         ..LINE 3. READ CONTOUR PROBS. (BETWEEN 0. AND 1.); SAME FOR EACH DATA SET READ(5,"(10F6.4)") (PR(I),I=1.L)
 88 C..
 89
           WRITE(100, "(/,18X, ""PROBABILITY VALUES OF CONTOURS"")")
WRITE(100, "(10(F6.4,2X))") (PR(I), I=1,L)
 90
 91
 92 C
 93
           DO DL10 K=1.M
 94 C
 95 C.
          .NEXT LINES. READ DATA SETS
                = 0 IF RAW DATA INPUT
1 IF ONLY X-MEAN AND COV. MATRIX INPUT
            MP
 96 C
 97 C
                 - NO. OF SAMPLE POINTS (IF MP=0)
 98 C
           READ(5, "(12, 15) ") MP, N
 99
           IF (MP.EQ.1)
                          THEN
100
                  READ(5, "(5E16.7)") XE1(K), XE2(K), C11, C22, C12
101
                  N=0
102
103
                  IF ((C11*C22).LT.(C12*C12)) THEN
                         WRITE(59, "(/"" ERKCR--COV MATRIX NOT POS DEF; SET #"", 15)") K
104
105
                         CALL EXIT(1)
                     ENDIF
106
107
              ELSE
                  IF (N.LT.2) THEN
108
                         WRITE(59, "(/"" ENGR--NOT ENOUGH DATA: SET #"", I5)") K
109
                         CALL EXIT(1)
110
                     ENDIF
111
                  READ(5,"(2E16.7)") (X1(I),X2(I),I=1,N)
112
113 C
114 C....CALCULATE SAMPLE MEAN, COVARIANCE MATRIX, AND MAX-MIN VALUES
115 C
                  XE1(K)=XE2(K)=C11=C12=C22=0.
116
                  XFC(1=XMM1=X1(1)
117
                  XMX2=XMN2=X2(1)
118
                  DO DLO1 I=1,N
119
                  XE1(K) = XE1(K) + X1(I)
120
```

```
121
                 XE2(K) = XE2(K) + X2(I)
                 C11 = C11 + (X1(I)*X1(I))
122
123
                 C22 = C22 + (X2(1)*X2(1))
                 C12 = C12 + (X1(1)*X2(1))
124
                 IF (XI(I).CT.XEXI)
125
                                      XMX1=X1(I)
                 IF (X1(1).LT.XMN1)
126
                                      XMN1=X1(I)
127
                 IF (X2(1).GT.XMX2)
                                      XMX2=X2(I)
128
                 IF (X2(I).LT.XMN2)
                                      XM(2=X2(I)
129 DL01
                 CONTINUE
130 C
131
                 C11 = (C11 - (XE1(K)*XE1(K)/N))/(N-1)
                 C22 = (C22 - (XE2(K)*XE2(K)/N))/(N-1)
132
                 C12 = (C12 - (XE1(K)*XE2(K)/N))/(N-1)

XE1(K) = XE1(K)/N
133
134
135
                 XE2(K) = XE2(K)/N
              ENDIF
136
                 1.LE.0.) THEN
WRITE(59, "(/""ERROR--X1 VARIANCE NEG OR 0; SET #"",15)") K
137
          IF (C11.LE.0.)
138
139
                 CALL EXIT(1)
140
              ENDIF
          IF (C22.LE.0.) THEN
WRITE(59, "(/""ERROR--X2 VARIANCE NEG OR 0; SET #"", 15)") K
141
142
                 CALL EXIT(1)
143
              ENDIF
144
145
          S1(K) = 1./SQRT(C11)
          S2(K) = 1./SQRT(C22)
146
          CORCOEF = S1*S2*C12
147
148 C
149 C....
          .DIAGONALIZE (ROTATE) THE MATRIX
150 C
151
           IF (C12.EQ.0.) THEN
              THETA = 0.
152
153
              ELSE
              IF (C11.EQ.C22) THEN
154
155
                 IF (C12.LT.O.) THEN
                        THETA = -P1/4.
156
157
                     ELSE
                        THETA = PI/4.
158
                 ENDIF
159
                 ELSE
160
                 THETA = .5*ATAN(2.*C12/(C11-C22))
161
                 IF (C11.LT.C22) THEN
162
                     IF (THETA.LT.0.) THEN
163
                        THETA=THETA+PI/2.
164
                        ELSE
165
                        THETA = THETA - PI/2.
166
                    ENDIF
167
                 ENDIF
168
              ENDIF
169
          ENDIF
170
171 C
           DISCR = SQRT((C11-C22)**2 + 4.*C12*C12)
172
           D1 = (C11+C22+DISCR)/2.
173
174
           D2 = (C11+C22-DISCR)/2.
           IF (D2.LT.0.) D2=0.
175
176 C
177 C....COMPUTE A CONSTANTS
178 C
179
           D1S = SQRT(D1)
180
           D2S = SQRT(D2)
```

```
181
            THC = COS(THETA)
            THS = SIN(THETA)
182
183
            All = DIS*THC
184
            A12 = -D2S*THS
185
            A21 = D1S*THS
186
            A22 = D2S*THC
187 C
188 C.....WRITE THE INFORMATION INTO THE PLOT FILE
189 C
            WRITE(160,"(//,"DATA SET NO. "",12)") K
WRITE(100,"(22X,""SAMPLE MEAN OF X1: "",E12.3)") XE1(K)
WRITE(100,"(22X,""SAMPLE MEAN OF X2: "",E12.3)") XE2(K)
WRITE(100,"(18X,""SAMPLE VARIANCE OF X1: "",E12.3)") C11
WRITE(100,"(18X,""SAMPLE VARIANCE OF X2: "",E12.3)") C22
WRITE(100,"(22X,""SAMPLE COVARIANCE: "",E12.3)") C12
WRITE(100,"(16X,""CORRELATION COEFFICIENT: "",E12.3)") CORCOEF
190
191
192
193
194
195
196
197
            THETA = 180.*THETA/PI
198
            WRITE(100,F10) THETA
199 F10
            FORMAT(" ANGLE OF MAJOR AXIS FROM X1 (DEGREES): ",F8.4)
WRITE(100,"(17X,""DIAGONALIZED VARIANCES: "",2E12.3)") D1,D2
200
201 C
202 C....COMPUTE ELLIPSE CURVES
203 C
            DO DL04 J=1,L
204
205
            ARG = -2.*ALOG(1.-PR(J))
206
            B = SQRT(ARG)
207 C
208
            DO DL03 I=1.NP
            X(I,J,K) = A11*B*VX(I) + A12*B*VY(I) + XE1(K)
209
            Y(I,J,K) = A21*B*WX(I) + A22*B*WY(I) + XE2(K)
210
                                         XMX1=X(I,J,K)
211
            IF (X(1,J,K).GT.XMXI)
            IF (X(I,J,K).LT.XMI)
212
                                         XMN1=X(I,J,K)
            IF (Y(1,J,K).GT.XMX2)
                                         XMX2=Y(I,J,K)
213
            IF (Y(I,J,K).LT.XMN2)
                                         XMN2=Y(I,J,K)
214
215 DL03
            CONTINUE
216 DL04
            CONTINUE
            CONTINUE
217 DL10
218 C
220 C*
            PLOT THE RESULTS
222 C
            CALL FRAME
223
224
            IF (ITFLAG.NE.0)
                    IF (X1T.GT.XMX1)
                                          XMX1=XIT
225
226
                    IF (XIT.LT.XMN1)
                                          XMN1=X1T
                   IF (X2T.CT.XMX2)
IF (X2T.LT.XMN2)
227
                                          XMX2=X2T
228
                                          XMN2=X2T
229
                ENDIF
            AMX = .05*(XMX1-XMN1)
230
            AMY = .05*(XMX2-XMN2)
XMX1 = XMX1 + AMX
231
232
            XIM1 = XMN1 - AMX
233
            XMX2 = XMX2 + AMY
234
235
            XMN2 = XMN2 - AMY
235 C
237
             CALL MAPS(XMN1,XMX1,XMX2,XMX2,.1,.999,.15,.999)
             IF (ITFLAG.NE.0) CALL POINTC(1H*,X1T,X2T,1)
238
239
            NCHAR = 1HA
240
```

```
241
         DO DL06 K=1.M
242
         CALL POINTS (X1(1.K), X2(1.K), N)
243
         CALL LINEP (XE1 (K), XMN2, XE1 (K), XMX2,4)
244
         CALL LINEP(XMN1, XE2(K), XMX1, XE2(K), 4)
245 C
246
         DO DL95 J=1,L
247
         CALL SETCRT(X(1,J,K),Y(1,J,K),0,1777B)
248
         CALL TRACEC(NCHAR, X(1,J,K), Y(1,J,K), NP)
249 DL05
         CONTINUE
250
         NCHAR=NCHAR+100000000000000000000B
251 DL06
         CONTINUE
252 C
         CALL SETCH(42.,3.,1,0,1,0)
253
254
         WRITE(100.F0) LBLX
255
         CALL SETCH(1.,42.,1,0,1,1)
256
         WRITE(100,F0) LBLY
257 F0
         FORMAT(A10)
258
         CALL FRAME
259 C
261 C*
         COMPUTE THE NORMALIZED RESULTS
263 C
264
         XMN1=XMX1=XMX2=XMX2=0.
265 C
266
         DO DL22 K=1,M
         DO DL2: J=1,L
267
268
         DO DL20 I=1,NP
         X(I,J,K) = S1(K)*(X(I,J,K)-XE1(K))
269
270
         Y(I,J,K) = S2(K)*(Y(I,J,K)-XE2(K))
         IF (K(I,J,K).GT.XMX1) XMX1=X(I,J,K)
271
         IF (X(I,J,K).LT.XMN1)
IF (Y(I,J,K).GT.XMX2)
272
                              XMN1=X(I,J,K)
                              XMK2=Y(I,J,K)
273
         IF (Y(1,J,K).LT.XMN2)
                              XMN2=Y(I,J,K)
274
275 DL20
         CONTINUE
         CONTINUE
276 DL21
277 DL22
         CONTINUE
278 C
PLOT THE NORMALIZED RESULTS
289 C*
282 C
283
         AMX = .05 \pm (XMX1 - XMN1)
284
         AMY = .05*(XMX2-XMN2)
         XMX1 = XMX1 + AMX
285
         XMN1 = XMN1 - AMX
286
         XMX2 = XMX2 + AMY
287
288
         XMN2 = XMN2 - AMY
289 C
         CALL MAPS(XMN1,XMX1,XMN2,XMX2,.1,.999,.15,.999)
290
         CALL LINEP(0.,XMN2,0.,XMX2,4)
CALL LINEP(XMN1,0.,XMX1,0.,4)
291
292
293 C
294
         NCHAR = 1HA
         DO DL25 K=1,M
295
296 C
297
         DO DL24 J=1,L
         CALL SETCRT(X(1,J,K),Y(1,J,K),0,1777B)
298
         CALL TRACEC(NCHAR, X(1, J, K), Y(1, J, K), NP)
209
360 DL24
         CONTINUE
```

```
301
         NCHAR=NCHAR+100000000000000000000
 302 DL25
         CONTINUE
 303 C
         CALL SETCH(42.,3.,1,0,1,0)
WRITE(100,F1) LBLX
 304
 305
         CALL SETCH(1.,42.,1,0,1,1)
WRITE(100,F1) LBLY
FORMAT(A10," - NORMALIZED")
 306
 307
 308 F1
 309 C
 313 C
         CALL TICHEK(IT1, IT2)
 314
 315
         IT2=IT2/1000000
         WRITE(59,FM1) IT2,IT1
 316
 317 FM1
         FORMAT(/, 16, A10)
 318 C
 319
         CALL EXIT(1)
1 320
         END
```

APPENDIX B

Proof of Equations 6 and 7

Problem: Transform a known 2 x 2 symmetric matrix (\underline{c}) to a diagonalized form using an orthogonal transformation; i.e., find d_1^2 , d_2^2 , and θ from the equations:

$$\frac{C}{D} = \frac{SDS^{-1}}{\begin{bmatrix} d_1^2 & 0 \\ 0 & d_2^2 \end{bmatrix}}$$
where

$$\underline{S} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$\underline{\mathbf{C}} = \begin{bmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{12} & \mathbf{c}_{22} \end{bmatrix}$$

By simply multiplying through the right side,

$$c_{11} = d_1^2 \cos^2\theta + d_2^2 \sin^2\theta$$
 (B-1)

$$c_{22} = d_1^2 \sin^2\theta + d_2^2 \cos^2\theta$$
 (B-2)

$$c_{12} = \sin\theta \cos\theta (d_1^2 - d_2^2)$$
 (B-3)

Now by subtracting (B-2) from (B-1):

$$c_{11} - c_{22} = (d_1^2 - d_2^2) (\cos^2\theta - \sin^2\theta)$$

$$= (d_1^2 - d_2^2) \cos 2\theta \qquad (B-4)$$

then (B-3) becomes:

$$c_{12} = \sin\theta \, \cos\theta \left[\frac{c_{11} - c_{22}}{\cos 2\theta} \right]$$

$$= (\frac{\sin 2\theta}{2})(\frac{1}{\cos 2\theta})(c_{11} - c_{22})$$

which gives

$$\tan 2\theta = \frac{2c_{12}}{c_{11} - c_{22}}$$

$$\theta = 1/2 \tan^{-1} \frac{2c_{12}}{c_{11} - c_{22}}$$
 (B-5)

Now, summing equation (B-1) and (B-2), we get

$$c_{11} + c_{22} = d_1^2 + d_2^2$$
 (B-6)

So, with (B-4) and (B-6)

But, from (B-5)

$$\cos 2\theta = \cos \left[\tan^{-1} \left(\frac{2c_{12}}{c_{11} - c_{22}} \right) \right]$$

$$= \frac{c_{11} - c_{22}}{\sqrt{(c_{11} - c_{22})^2 + 4(c_{12})^2}}$$

SO,

$$\begin{vmatrix} d_{11}^{2} \\ d_{22}^{2} \end{vmatrix} = \frac{c_{11} + c_{22} + \sqrt{(c_{11} - c_{22})^{2} + 4c_{12}^{2}}}{2}$$
 (B-8)

Equations (B-5) and (B-8) are equivalent to equations (6) and (7). This can also be proved by noting that d_1^2 and d_2^2 are merely the eigenvalues of \underline{C} and that the columns of \underline{S} are the eigenvectors. Then, by solution of the eigenvalue-eigenvector problem, we achieve the same results.

When evaluating these equations by computer, we must be certain that the eigenvalues correctly correspond to their associate eigenvector. Otherwise, a 90° shift of the ellipse may result.